Introduction to Stata 10

Workshop II: Data Analysis & Representation with Stata 10

Brent K. Nakamura

January 22, 2009

I. Preliminaries
New in Stata version 10 is an option to select a working directory (this option isn’t available in Stata 9 and in that version by default all files are saved to the directory in which you’re currently working). As you’ve already created an all lowercase, no spaces, and easy to remember directory at the root of your drive (e.g. C:\qm_data), you need to first specify that as your working directory.

To specify C:\[directory name] as your working directory in Stata 10:

File(Change Working Directory . . . ([Select C:\[directory name](OK

Great. Now we’re ready to begin (make sure your memory settings, use the set memory xM, permanently command if you’re not yet ready there).

II. More data analysis in Stata

Let’s try another example with a few fancy twists.

Go to http://www.bnakamura.com/stata and place two files:

1. 2002 Natality Data Set, 1% Extract of 100% as CSV

2. 1968 Natality Data Set, 2% Extract of 50% as CSV

In your main data directory (probably C:\qm_data).

Now, open Stata and try to use the 2002 Natality Data Set file (nat2002.csv). You’ll notice (by the icon and/or file extension .csv) that the file we’re using isn’t a native Stata (.dta) file. As such, we’ll need a special command to use it.

. insheet using nat2002.csv

(1 var, 40111 obs)

Stata can handle certain types of data that aren’t in its native .dta format. The comma separated values (.csv) file is one of the most common data types out there and the one most easily imported into Stata. We’ve just translated, with the simple insheet command (using tells Stata the proper file name to import) a basic data file into Stata. Now that you’ve imported it into Stata, save it to .dta format:

. save nat2002

The nat2002 file is a 1% random sample of the 100% extract of a study of health and demographic characteristics recorded on birth certificates for all births occurring in the United States as recorded by the National Center for Health Statistics (NCHS). It’s pretty simple as this excerpt has only one variable, age_mom. Let’s see what that variable is about:

. codebook

--

age_mom (unlabeled)

--

 type: numeric (byte)

 range: [12,54] units: 1

 unique values: 40 missing .: 0/40111

 mean: 27.333

 std. dev: 6.20048

 percentiles: 10% 25% 50% 75% 90%

 19 22 27 32 36

As this is a listing of the age of mothers in 2002 at childbirth, we see that the average age is 27 years and 4 months with a range of 12 years of age to 54 years of age. Let’s delve deeper:

. sum age_mom

 Variable | Obs Mean Std. Dev. Min Max

-------------+--

 age_mom | 40111 27.333 6.200484 12 54

Now we have some summary statistics of births by age of the mother. Perhaps more usefully we also know that Stata has done the relevant calculations to determine these various measures. We can prove this by typing:

. return list

scalars:

 r(N) = 40111

 r(sum_w) = 40111

 r(mean) = 27.33300092244023

 r(Var) = 38.44600116377377

 r(sd) = 6.200483945933073

 r(min) = 12

 r(max) = 54

 r(sum) = 1096354

Stata then returns a number of scalars it has used to calculate the values returned from the sum command. Everytime we do a new calculation in Stata, new scalars (“r-class variables”) are calculated.

. count if age_mom==30

 2180

. return list

scalars:

 r(N) = 2180

Say we wanted to calculate with precision the fraction of mothers who are 25 years old giving birth in 2002. How might we do that?

We first calculate the denominator of the fraction.

. count

. return list

scalars:

 r(N) = 40111

The r-class variable (r(N)) has a value of 40,111. Let’s rename and store that variable as a local variable (which won’t be overwritten upon a new calculation):

. local denominator=r(N)

Now that we’ve stored the value 40,111 (also r(N)) as `denominator’ we can do another count in order to calculate the actual fraction. Notice also that we used a single = sign because we’re creating a new (local) variable.

To get the numerator of the desired fraction, we use:

. count if age_mom==25

. return list

. local numerator=r(N)

We can now use the ratio to compute the fraction.

. dis “Fractions of births in 2002 occurring to 25-year old mothers is” `numerator’/`denominator’

Notice that Stata simply displays as text the words between the double quotation marks and that we have to use a special single quotation mark (next to the #1 key) to indicate a local variable and a single quotation mark (the apostrophe) to indicate that the local variable name is over. It is absolutely essential that you use the ` and ' marks and no others—i.e. be especially careful that you don’t cut-and-paste something in from Word, etc.
As examples of how to use and (&), or (|) operators, and other (>=, >, <, <=, !=) operators:

How to count the number of mothers who gave birth in 2002 with ages at the extremes of the sample (i.e. maximum and minimum values)?

. count if age_mom==12 | age_mom==54

2

How to count the number of mothers between ages 12 and 19 who gave birth in 2002?

. count if age_mom>=12 & age_mom<=19

4366

How to count the number of mothers who weren’t aged 30 at the time they gave birth in 2002?

. count if age_mom!=30

37,931

(!= is Stata-speak for not equal to.)
Finally, let’s do three exercises and compute:

1. The fraction of births in 2002 that occurred to mothers 30-34 years of age.

2. The fraction of mothers who were within one standard deviation of the average age.

3. The fraction of mothers who were within two standard deviations of the average age.
[The answers and steps to the solutions appear in Appendix B]
III. Keeping Track of Your Work

There’s a reason it’s called “statistical programming software.” This means that much of what we’ll do here is translate commonsense instructions into programming/computer-esque language and use that language either as a log file or a .do file.

There are two ways to order and keep track of your work in Stata:

1. A “log file”

2. A “.do file”

Sometimes you’ll want to keep a record of what you were typing in (e.g. you’re not yet sure enough about your commands to write a .do file but still want to keep track of it), so use a log file. The other reason, which we’ll see in detail after this example is that in tandem with a .do file, the .log file is a great way to report results and diagnose (and fix) and programming errors. Remember that, like any data file, your log file will save to the working directory you’ve specified above (or in Stata 9 whatever directory contains the data set on which you’re currently working).

3.1 Recording using a .log file
Before you do anything, turn on your log file (and save it as a text file—trust me— this is the way to go), to save what you’re typing in:

. log using workshop1ex.txt, text

Note that there are three different commands:

1. To pause the log, use . log off

2. To restart logging using the same log you were using (and haven’t yet closed out) previously, use . log on

3. To close out the log, use . log close

Let’s try recoding the variable again and creating two binary or dummy variables:

Recall that the first step in recoding is to create one value using the generate command:

. generate teenage_mom=1 if age_mom<=19

(35745 missing values generated)

. replace teenage_mom=0 if age_mom>19

(35745 real changes made)

. gen older_mom=1 if age_mom>=35

(34525 missing values generated)

. replace older_mom=0 if age_mom<35

(34525 real changes made)

Let’s check out the mean and standard deviations for those variables:

. sum teenage_mom

 Variable | Obs Mean Std. Dev. Min Max

-------------+--

 teenage_mom | 40111 .1088479 .3114522 0 1

. sum older_mom

 Variable | Obs Mean Std. Dev. Min Max

-------------+--

 older_mom | 40111 .1392635 .3462256 0 1

How if at all do these summaries this correspond fractions we could generate ourselves?
To get an overall view, stop the log and view the output:

. log close
Specifically, let’s see what fraction of mothers are 19 years of age or younger:

. count if age_mom<=19

. return list

. local teen=r(N)

. count

. local teen_denom=r(N)

. dis (`teen')/(`teen_denom')
Now, let’s look at the results of our .log file to see what we have.

Great! It captured everything.

3.2 Creating and using .do files
Now, as you’re familiar with local variables, let’s try something a bit more complicated—using a .do file to fix everything.

What is a .do file? A .do file is a command file that allows you to execute one or more Stata commands at a time and allows you to put in comments to track your work.
In order to create a .do file, follow these steps:

1. Use a plain text editor (e.g. notepad (PCs), [I believe, but you can ask Justin if I’m wrong] TextEdit or SimpleText (Macs), or other third-party software).

2. Save the file as a .do file

a. You may have to select, e.g. in Notepad, the Save as type: (All Files

i. Then type in .do at the end of the filename, e.g. if you’re naming a .do file test.do, you would have to make sure the file extension is .do.

3. Remember the following:

a. Only one command may be entered per line

b. All commands are case sensitive
c. Use comments freely and often

What are “comments?” They’re ways to create programming signposts and indicate what you’re doing. You can indicate comments in four ways:

1. Begin the line with *

2. Place the comment between /* and */ delimiters

3. Begin the comment with //

4. Begin the comment with ///

So, for example, if I wanted to write a long comment about how I felt about Quantitative Methods I I’d write:

/* Quantitative Methods I is the coolest class ever. We get to write really long comments that are hidden from Stata. I feel like I’m really starting to pull back the curtain, look under the hood, and see what up with x^6—did I mix metaphors there? Maybe. But, whatever. I rock! */

Let’s do an example using the 1968 Natality data file.

First, open up your plain text editor (“ASCII editor”).

Second, save your file following the rules above:

[For PCs]: File(Save As…(Save as type:(All Files([in the File name field]: wkshp2.do

Third, say our objective is to do Assignment #1, question 2 for the 1986 data file—let’s create a comment on the first line or two of the file:

/* Create dummy variables for older and teen mothers (teen<=19; older >=35) and then graph the general distribution */

Then, then real work begins:

1. Use clear to make sure everything’s gone

2. Import the relevant “flat file” (in .csv format) using the insheet command

3. Create the teen mother and older mother variables using the generate and replace commands (remember to also use if conditional/logical statements)

4. Get the relevant scalars/r-class variables using the summarize commands on the data set as a whole (i.e. use sum age_mom) so you can make comparisons with the two dummy variables.

a. Create the local variables from those scalars—four in total

i. Numerator teenage mom

ii. Denominator teenage mom (which is the same as the overall denominator)

iii. Numerator older mom

iv. Denominator older mom

5. Calculate the fractions (using the aforementioned stored variables) and display them using the display command

6. Use the summarize command on each of the new two dummy variables

[See Appendix C for a finished .do file]

Sweet! It worked. Now, as you’ll sometimes write really long .do files for which only a .log file will work if you’d like to review your results, just add

. capture log close

. log using [filename].txt, text replace

to the beginning of your log file and you’re all set.

Excellent, now you’re well on your way to being able to do nearly anything you’d like in STATA. There’s only one thing left for your introduction—learning how to make histograms.

IV. Beginning visual data representation
Stata has a wealth of visual data representation options. For instance, it can make very detailed bar graphs, pie charts, scatterplots, histograms, hazard plots, and nearly anything your statistical heart desires. Use the help graph command to learn more. Today, however, we’ll be starting with that most basic of basic graphs, the histogram.

4.1 The histogram
The basic command to create a histogram is histogram. Let’s try it out to see what might happen with the 2002 Natality data file.

. use nat2002

Notice that we can just use the nat2002 data file natively (i.e. without having to use insheet or any other command) because once we saved it above using save after importing it with the insheet command, it was automatically saved as a .dta file that Stata can use without more imput or thought.

Notice that we need to put in the variable name.

. histogram age_mom

Both work here. The result is:

[image: image1.png]Density

Let’s say, however, that we’re unsatisfied with the way the graph looks. One way to deal with that is to change either the number of bins or their width. The general form of a histogram command is:

histogram varname [if] [in] [weight] [, [continuous_opts | discrete_opts] options]
Thus, one of the options under histogram is bin(#) (see the help histogram viewer to verify that it’s true). So, if you’d like the change the number of bins to 5, type in:

. histogram age_mom, bin(5)

You should get:

[image: image6.png]Densty

If, instead, you’d like to see bins with a width of 5, you’d use:

. histogram age_mom, width(5)

You would get:

[image: image2.png]age_mom

£0 2w
Rysuaq

So, say you’re having a hard time seeing, because Stata will only output one graph at a time, how all the graphs fit together. Stata has an easy way to combine all the various graphs you’ve made into one panel so you can see everything together. That command is graph combine.

4.1 Combining graphical output
The first thing you should remember for the graph combine command is that you must first save each graph you’ll be using and then combine them into one big panel of graphical glory. Since you’re making a few things at once the best thing to do is to use a .do file. Let’s do that now (and we’ll get more practice at creating .do files too).

Again, the first thing to do is to open your plain text (“ASCII”) editor. You’ll then save the file—let’s call our file manygraphs.do (remember to select “Save as type:” “All Files”).

What’s up first? Creating a comment to describe what we’re doing:

/*This is a file that will allow us to see just how to combine many histograms from the 1968 and

2002 Natality Data Files*/

What shall we do next? Let’s tackle things in order using the 1968 histograms first and then the 2002 histograms.

Before we do anything else, we need to make sure we’re working with a clean instance of Stata:

. clear

First, we’ll import from “flat file”/.csv format the 1968 Natality Data Set:

. insheet using nat1968.csv

Then, let’s draw our first histogram using bin width 5:

. histrogram age_mom, width(5)

Now, and here’s something new, we need to save the graph. The relevant command here is graph save.

. graph save histo68_width5

Unless we specify otherwise, Stata presumes (i.e. defaults to) the use of the .gph file format—that’s the native Stata format (meaning we can’t open .gph files using any other program, e.g. Paint, Word, etc.). If you’d like to save the graph so it’s readable by someone who doesn’t have Stata, use the .tif or .ps format. But, for most purposes, it’s best to leave things as a .gph file so you can continue to work with it in Stata.

Great, now we’ve saved the graph. Repeat the process with the other three graphs, remembering to create easy to remember and non-duplicative file names. Remember that for the 2002 Natality histograms you’ll need to use the 2002 Data Set (meaning you’ll clear the 1968 data set and then insheet the nat2002.csv data set).

Now, once you’ve created the final three graphs, we can now use the graph combine command to create a panel on which we can display all four graphs. The relevant command here is:

. graph combine histo68_width5.gph histo68_width1.gph histo02_width5.gph histo02_width1.gph
Notice that while you didn’t have to write .gph after each file name to save the files, you absolutely must do so in the graph combine command.

If you were successful with your graph combine command, you should see:

[image: image3.png]@ w a

i v

shom

..__.L,

@ mow oo
st Auag

A copy of the graph combine .do file is available in Appendix D.
Finally, there’s one more thing you can do to make things a bit fancier—Stata, as you can see by running the help histogram command, has a vast number of options to help you spice up your histogram, e.g. xlabel, but in order to explore the relevance of standard deviations and whatnot, we can also manually specify a line using the xline option. All you have to do is specify where you want the vertical line (it’s called “xline” because it’s a line running through the x-axis at whatever point you specify) by putting any value you want in the parentheses for xline().

So, you can try that out with whole numbers, e.g. 19 and 35, as following:

. histogram age_mom, xline(19) xline(35) width(1)

If you did that in the 2002 Natality file you’d have something that looks like:

[image: image4.png]30
age_mom

But, that’s not all. You can also substitute in saved local variables as we had done previously. Let’s write a new .do file.

[See Appendix E]

If you did it correctly it should look like:

[image: image5.png]30
age_mom

Appendix A
Running List of Stata Commands and Options We’ve Covered

use

save

set memory

describe

summarize

lookfor

clear

list

browse

edit

if

_all

tabulate

row

recode

generate

replace

return list

display

local
log

histogram

graph [save]

Appendix B: Answers to Problems Above

Answers:

1. Compute the fraction of births in 2002 that occurred to mothers 30-34 years of age.

a. . count

b. . return list

c. . local denominator=r(N)

d. . count if age_mom>=30 & age_mom<=34

e. . return list

f. . local numerator=r(N)

g. . dis “Fraction of births in 2002 that occurred to mothers between 30 and 34 years of age is” `numerator’/`denominator’

h. .2383168

2. The fraction of mothers who were within one standard deviation of the average age.

a. . sum age_mom

b. . return list

c. . local avg=r(mean)

d. . local sd=r(sd)

e. . local lhs=(`avg’)-(`sd’)

f. . local lhs2=(`avg’)-2*(`sd’)

g. . local rhs=(`avg’)+(`sd’)

h. . local rhs2=(`avg’)+2*(`sd’)

i. . count if age_mom>=`lhs’ & age_mom<=`rhs’

j. . local numerator=r(N)

k. . count

l. . local denominator=r(N)

m. . di “Fraction of within 1 Standard Deviation of average is ” `numerator’/`denominator’

i. .61671362

3. The fraction of mothers who were within two standard deviations of the average age.

a. [Make sure you’ve done a-h above, then follow along below]:

b. . count if age_mom>=`lhs2’ & age_mom<=`rhs2’

c. . local numerator=r(N)

d. . count

e. . local denominator=r(N)

f. . di “Fraction of within 1 Standard Deviation of average is ” `numerator’/`denominator’

i. .97377278
Appendix C: Example .do file

/* Create dummy variables for older and teen mothers (teen<=19; older >=35) and then graph the

general distribution */

clear

insheet using nat1968.csv

gen teen=1 if age_mom<=19

replace teen=0 if age_mom>19

gen older=1 if age_mom>=35

replace older=0 if age_mom<35

sum age_mom

local denom=r(N)

sum age_mom if age<=19

local num_teen=r(N)

sum age_mom if age>=35

local num_older=r(N)

di "The fraction of teenage mothers in 1968 is " `num_teen'/`denom'

sum teen

di "The fraction of older mothers in 1968 is" `num_older'/`denom'

sum older

//FIN

Appendix D: The Combine Graphs .do File

/*This is a file that will allow us to see just how to combine many histograms from the 1968 and

2002 Natality Data Files*/

clear

insheet using nat1968.csv

histogram age_mom, width(5)

graph save histo68_width5, replace

histogram age_mom, width(1)

graph save histo68_width1, replace

clear

insheet using nat2002.csv

histogram age_mom, width(5)

graph save histo02_width5, replace

histogram age_mom, width(1)

graph save histo02_width1, replace

clear

graph combine histo68_width5.gph histo68_width1.gph histo02_width5.gph histo02_width1.gph

//FIN

Appendix E: Example of Histogram with xline Overlay

//xline example

clear

insheet using nat2002.csv

sum age_mom

local sd1=r(sd)

local avg=r(mean)

local LH_sd=(`avg')-(`sd1')

local RH_sd=(`avg')+(`sd1')

local LH_2sd=(`avg')-2*(`sd1')

local RH2_sd=(`avg')+2*(`sd1')

histogram age_mom, xline(`sd1') xline(`LH_sd') xline(`RH_sd') xline(`LH_2sd') xline(`RH2_sd')

//FIN

Page 4 of 17

